skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agudo, Ivan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the most well-known extragalactic sources in the sky, quasar3C 454.3, shows a curved parsec-scale jet that has been exhaustively monitored with very-long-baseline interferometry (VLBI) over the recent years. In this work, we present a comprehensive analysis of four years of high-frequency VLBI observations at 43 GHz and 86 GHz, between 2013–2017, in total intensity and linear polarization. The images obtained from these observations enabled us to study the jet structure and the magnetic field topology of the source on spatial scales down to 4.6 parsec in projected distance. The kinematic analysis reveals the abrupt vanishing of at least four new superluminal jet features in a characteristic jet region (i.e., region C), which is located at an approximate distance of 0.6 milliarcsec from the VLBI core. Our results support a model in which the jet bends, directing the relativistic plasma flow almost perfectly toward our line of sight, co-spatially with the region where components appear to stop. 
    more » « less
  2. null (Ed.)
    The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and dark matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era. 
    more » « less
  3. Measurements of a magnetar’s x-ray polarization constrain models of the emission mechanism. 
    more » « less
  4. Abstract We report on a ∼5 σ detection of polarized 3–6 keV X-ray emission from the supernova remnant Cassiopeia A (Cas A) with the Imaging X-ray Polarimetry Explorer (IXPE). The overall polarization degree of 1.8% ± 0.3% is detected by summing over a large region, assuming circular symmetry for the polarization vectors. The measurements imply an average polarization degree for the synchrotron component of ∼2.5%, and close to 5% for the X-ray synchrotron-dominated forward shock region. These numbers are based on an assessment of the thermal and nonthermal radiation contributions, for which we used a detailed spatial-spectral model based on Chandra X-ray data. A pixel-by-pixel search for polarization provides a few tentative detections from discrete regions at the ∼ 3 σ confidence level. Given the number of pixels, the significance is insufficient to claim a detection for individual pixels, but implies considerable turbulence on scales smaller than the angular resolution. Cas A’s X-ray continuum emission is dominated by synchrotron radiation from regions within ≲10 17 cm of the forward and reverse shocks. We find that (i) the measured polarization angle corresponds to a radially oriented magnetic field, similar to what has been inferred from radio observations; (ii) the X-ray polarization degree is lower than in the radio band (∼5%). Since shock compression should impose a tangential magnetic-field structure, the IXPE results imply that magnetic fields are reoriented within ∼10 17 cm of the shock. If the magnetic-field alignment is due to locally enhanced acceleration near quasi-parallel shocks, the preferred X-ray polarization angle suggests a size of 3 × 10 16 cm for cells with radial magnetic fields. 
    more » « less
  5. null (Ed.)